Topic: Similarity of triangles.

Lesson structure:

1. Review of congruent triangles:

- When are triangles called congruent?
-What are the characteristics of congruent triangles?

2. Introduction:

Giving the definition of similar triangles

Definicja 1.
 Trójkąt $A_{1} B_{1} C_{1}$ jest podobny do trójkąta $A B C$ weedy, gdy $\frac{\left|A_{1} B_{1}\right|}{|A B|}=\frac{\left|B_{1} C_{1}\right|}{|B C|}=\frac{\left|A_{1} C_{1}\right|}{|A C|}$ oraz $\left|\varangle A_{1}\right|=|\varangle A|,\left|\varangle B_{1}\right|=|\varangle B| i\left|\varangle C_{1}\right|=|\varangle C|$.

$$
\Delta A_{1} B_{1} C_{1} \sim \Delta A B C
$$

3.Similarity scale

Liczbę $k, k=\frac{\left|A_{1} B_{1}\right|}{|A B|}=\frac{\left|B_{1} C_{1}\right|}{|B C|}=\frac{\left|A_{1} C_{1}\right|}{|A C|}$, nazywamy skalą podobieństwa trójkąta $A_{1} B_{1} C_{1}$ do trójkąta $A B C$. Skala podobieństwa jest zawsze liczbą dodatnią.

$$
\begin{aligned}
& \triangle A_{1} B_{1} C_{1} \sim \triangle A B C \\
& \frac{\left|A_{1} B_{1}\right|}{|A B|}=\frac{8}{4}=2 \quad \frac{\left|B_{1} C_{1}\right|}{|B C|}=\frac{5}{2,5}=2 \quad \frac{\left|A_{1} C_{1}\right|}{|A C|}=\frac{6}{3}=2 \\
& k=2 \\
& \triangle A B C \sim \triangle A_{1} B_{1} C_{1} \\
& \frac{|A B|}{\left|A_{1} B_{1}\right|}=\frac{4}{8}=\frac{1}{2} \quad \frac{|B C|}{\left|B_{1} C_{1}\right|}=\frac{2,5}{5}=\frac{1}{2} \quad \frac{|A C|}{\left|A_{1} C_{1}\right|}=\frac{3}{6}=\frac{1}{2} \\
& k=\frac{1}{2}
\end{aligned}
$$

1. Similarity features of triangles:

BBB:
Twierdzenie 1. Cecha bbb podobieństwa trójkątów Jeżeli długości boków trójkąta $A B C$ są proporcjonalne do odpowiednich długości boków trójkąta $A_{1} B_{1} C_{1}$, czyli $\frac{\left|A_{1} B_{1}\right|}{|A B|}=\frac{\left|B_{1} C_{1}\right|}{|B C|}=\frac{\left|A_{1} C_{1}\right|}{|A C|}$, to te trójkąty są podobne.

BKB:
Twierdzenie 2. Cecha bkb podobieństwa trójkątów Jeżeli długości dwóch boków trójkąta $A B C$ są proporcjonalne do odpowiednich długości dwóch boków trójkąta $A_{1} B_{1} C_{1}$, czyli $\frac{\left|A_{1} B_{1}\right|}{|A B|}=\frac{\left|B_{1} C_{1}\right|}{|B C|}$, oraz kąty między tymi bokami są równe, to trójkąty te są podobne.

KKK:

Twierdzenie 3. Cecha kkk podobieństwa trójkątów Jeżeli dwa kąty trójkąta $A B C$ są odpowiednio równe dwóm kątom trójkąta $A_{1} B_{1} C_{1}$, czyli $\left|\varangle A_{1}\right|=|\varangle A|$ oraz $\left|\varangle C_{1}\right|=|\varangle C|$, to trójkąty te są podobne.

2. Solving problems.

1. Korzystając z definicji 1 . odpowiedz na pytania:
a) Czy dowolne dwa trójkąty równoboczne są podobne?
b) Czy dowolne dwa trójkąty równoramienne są podobne?
c) Czy dowolne dwa trójkąty prostokątne równoramienne są podobne?

Zad 1
(a) Cry dowolne dwa Δ mowmobarne sa, padobne? TAK (bbb)
(b) Uy dowothe diva Δ nówmoramieume sa, podobne? NIE

$$
\begin{aligned}
& \frac{\left|A_{1} B_{1}\right|}{|A B|}=1 \\
& \frac{\left|B C_{1}\right|}{|B C|}=\frac{15}{6} \neq 1
\end{aligned}
$$

c) Cry dowdue diva Δ prostokatine mownorauvienne sa padbone?

$$
\begin{aligned}
& \frac{\left|A^{\prime} C^{\prime}\right|}{|A C|}=\frac{y}{x} \quad|K C A B|=\left|C^{\prime} A^{\prime} B^{\prime}\right|=90^{\circ} \\
& \frac{\left|A^{\prime} B^{\prime}\right|}{|A B|}=\frac{y}{x} \quad \operatorname{TAK} \quad(b k b)
\end{aligned}
$$

9. Sprawdź, czy trójkąt $D E F$ jest podobny do trójkąta $A B C$. Jeśli tak, to podaj skalę tego podobieństwa.
a)

b)

c)

$$
\begin{aligned}
\sqrt{12}^{2}+\sqrt{3}^{2} & =|E D|^{2} \\
12+3 & =|E D|^{2} \\
|E D|^{2} & =15 \\
|E D| & =\sqrt{15} \vee|E D|=-\sqrt{15} \text { spreumest }
\end{aligned}
$$

Boki majerstste

$$
\frac{|D F|}{|A C|}=\frac{\sqrt{3}}{3}
$$

Bok; majdtuzse

$$
\frac{|E D|}{|A B|}=\frac{\sqrt{15}}{3 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{75}}{15}=\frac{5 \sqrt{3}}{15_{3}}=\frac{\sqrt{3}}{3}
$$

Brostate bok;

$$
\frac{|E F|}{|C B|}=\frac{\sqrt{12}}{6}=\frac{2 \sqrt{3}}{\varepsilon_{3}}=\frac{\sqrt{3}}{3}
$$

$$
\begin{gathered}
\triangle D E F \sim \triangle A B C \quad(b b b) \\
k=\frac{\sqrt{3}}{3}
\end{gathered}
$$

Kutsra pryprosotatana:

$$
\frac{|F D|}{|A B|}=\frac{6}{4}=\frac{3}{2}
$$

diusza pryprostolestara:

$$
\frac{|D E|}{|C B|}=\frac{8}{6}=\frac{4}{3}
$$

$$
\triangle D E F \text { i } \triangle A B C \text { mie sa, podobme }
$$

(d)

$$
\begin{aligned}
& |\angle A B C|=2 \beta=88^{\circ} \\
& |\angle X E D F|=\beta+48^{\circ}=92^{\circ}
\end{aligned}
$$

